1 • 1 + i • i = 1 + (-1) = 0 = 0 • 0
Pythagoras holds, provided there’s a 90° angle at A.
Submitted 4 weeks ago by muntedcrocodile@lemm.ee to science_memes@mander.xyz
https://lemm.ee/pictrs/image/b7195764-54c9-4be2-b457-9f38acd45ae7.jpeg
1 • 1 + i • i = 1 + (-1) = 0 = 0 • 0
Pythagoras holds, provided there’s a 90° angle at A.
this is why it is still a theorem
I’m so angry at people who think that distances can be imaginary.
Never been together with people and still felt alone?
When talking about AC power, some of the power consumed doesn’t actually produce real work. It gets used in the generation of magnetic fields and charges in inductors and capacitors.
The power being used in an AC system can be simplified by using a right triangle. The x axis is the real power being used by resistive parts of the circuit (in kilowatts, KW). The y axis is reactive power, that is power being used to maintain magnetic fields and charges (in kilovolt-amperes reactive, KVAR). And the hypotenuse is the total power used by the circuit, or KVA (kilovolt-amperes).
Literal side note: they’re all the same units, but the different sides of the triangle are named differently to differentiate in writing or conversation which side of the power triangle is being talked about. Also, AC generator ratings are given in KVA, so you need to know the total impedance of your loads you want to power and do a bit of trig to see if your generator can support your loads.
The reactive component of AC power is denoted by complex numbers when converting from polar coordinates to Cartesian.
Anyways, I almost deleted this because I figured your comment was a joke, but complex numbers and right triangles have real world applications. But power triangles are really just simplifications of circles. By that I mean phasors rotating in a complex plane, because AC power is a sine wave.
They’re about as imaginary as numbers are in general.
Complex numbers have real application in harmonics like electronics, acoustics, structural dynamics, damping, regulating systems, optronics, lasers, interferometry, etc.
In all the above it’s used to express relative phase, depending on your need for precision you can see it as a time component. And time is definitely a direction.
But that’s not the definition of the absolut value, I.e. “distance” in complex numbers. That would be sqrt((1+i)(1-i)) = sqrt(2) Also the triangle inequality is also defined in complex numbers. This meme is advanced 4-4*2=0 Works only if you’re doing it wrong.
I get it, it’s projected on a comlplex sphere. B and C are the same point
please stop making it make sense
A and B have a wormhole between them
It gets worse once you start doing trig on it
i = 1
is the only logical choice
Literally, this is one of those questions where they’re testing logic and your understanding that the figures aren’t necessarily representative of physical reality.
In the complex plane each of these vectors have magnitude 1 and the distance between them is square root of two as you would expect. In the real plane the imaginary part has a magnitude of zero and this is not a triangle but a line. No laws are broken here.
funny Interpretation: in the complex plane, the imaginary axis is orthogonal to the real axis. so instead of the edge marked with i, imagine an edge of length one orthogonal to that edge. It would be identical to the edge marked with one, so the distance between the ends of the edges is zero.
But then CB couldn’t also be 0; wouldn’t it be cos(1 + i)
? Or something like that.
oh I mixed up the points, I meant to say CB is 0 in the end
Wish me luck for I’m doing trig test with radians (2 pi rad ?)
Radians are the objectivly better way to do angles tho. Just remeber π=180deg and ur right. Btw here is a another brain fuck the units radians/second is just Hz
Thank you for reminding me!
Btw, Radians/sec = Hz? What is this, physics?
Radians are the objectivly better way to do angles
Yes, and tau is objectively better than pi. Just remember tau = 360°. Which is a full circle, which easier to work with than half a circle.
You didn’t really expect an imaginary triangle to behave like a real one, did you?
I feel violated trying to read that in my brain.
You can make something like this properly by defining a different metric. For example with metric dl^2^ = dx^2^ - dy^2^ the vector (1, 1) has length 0, so you can make a “triangle” with sides of lengths 1, -1 and 0.
calcopiritus@lemmy.world 4 weeks ago
This triangle is impossible.
If the distance between B and C is 0, B and C are the same points. If that is the case, the distances between A and B and A and C must be the same.
However, i ≠ 1.
If you want it to be real (hehe) the triangle should be like this:
Drawing that on mobile was a pain.
As the other guy said, you cannot have imaginary distances.
Also, you can only use Pythagoras with triangles that have a 90° angle. Nothing in the meme says that there’s a 90° angle. As I see it, there are only 0° and 180° angles.
Goodbye, I have to attend other memes to ruin.
thomasloven@lemmy.world 4 weeks ago
Context matters. In geometry i is a perfectly cromulent name for a real valued variable.
Dayroom7485@lemmy.world 4 weeks ago
Mad mobile drawing!!