But I like my inextinguishable fires :(
Comment on Lithium-free sodium batteries exit the lab and enter US production
cm0002@lemmy.world 8 months ago
non-flammable end use
Safe and stable chemistry
Oh neat, finally a non-explody and/or unstable battery lmao
fuckwit_mcbumcrumble@lemmy.dbzer0.com 8 months ago
Ilovethebomb@lemm.ee 8 months ago
Lead acid has been there for a hundred years, lithium phosphate is another option.
Duamerthrax@lemmy.world 8 months ago
Nickle-iron
dual_sport_dork@lemmy.world 8 months ago
Well, only relatively.
In order to work batteries need to have a certain amount of instability built in, on a chemical level. Them electrons have to want to jump from one material to a more reactive one; there is literally no other way. There is no such thing as a truly “safe and stable” battery chemistry. Such a battery would be inert, and not able to hold a charge. Even carbon-zinc batteries are technically flammable. I think these guys are stretching the truth a little for the layman, or possibly for the investor.
Lithium in current lithium-whatever cells is very reactive. Sodium on its own is extremely reactive, even moreso than lithium. Based on the minimal lookup I just did, this company appears to be using an aqueous electrolyte which makes sodium-ion cells a little safer (albeit at the cost of lower energy density, actually) but the notion that a lithium chemistry battery will burn but a sodium chemistry one “won’t” is flat out wrong. Further, shorting a battery pack of either chemistry is not likely to result in a good day.
voracread@lemmy.world 8 months ago
I believe it is still better due to raw material availability?
dual_sport_dork@lemmy.world 8 months ago
It is definitely that. That’s kind of the point, actually. Sodium is easier to come by than lithium and does not require mining it from unstable parts of the world, nor relying on China.
UnderpantsWeevil@lemmy.world 8 months ago
The appeal of China is largely in the size of the labor force. Whether this tech is more or less feasible than cobalt and lithium, businesses will still want to exploit the large volume of cheap Chinese labor in order to build them.
Wooki@lemmy.world 8 months ago
If you consider Australia unstable, sure, maybe for humans, the animals are fine unless you’re Steve Irwin, just dont go diving with stingrays
dharmacurious@slrpnk.net 8 months ago
You who are so wise in the ways of science, can you explain to me if this is safe/will be super dangerous if exposed to water? Doesn’t sodium, like, blow the fuck up when it comes in contact with water?
WolfLink@lemmy.ml 8 months ago
Yeah throwing a piece of sodium metal into water will cause a violent reaction. Even touching it with your finger is bad because of the moisture on your skin.
But sodium chloride (table salt) dissolves in water easily and safely, resulting in an aqueous solution including sodium ions.
dual_sport_dork@lemmy.world 8 months ago
Well, metallic sodium liberates hydrogen real fast on contact with water, which I guess is tantamount to the same thing.
Yes. But not to the same level as just dropping a brick of pure sodium in a bathtub. In a battery like this there is not pure lithium/sodium/whatever just sloshing around inside. The sodium is tied up being chemically bonded with whatever the anode and cathode materials are. Only a minority of the available sodium is actually free in the form of ions carrying the charge from cathode to anode.
Just as with lithium-ion chemistry batteries, it is vital that the cells remain sealed from the outside because the materials inside will indeed react with air, water, and the water in the air. Exposing the innards will cause a rapid exothermic reaction, i.e. it will get very hot and optionally go off bang.
dharmacurious@slrpnk.net 8 months ago
Okay, that makes a lot of sense. I was asking because I wondered how viable this would be in boats/ships, outdoor areas, off grid cabins, et cetera. Seems like it’s basically the same thing, then, right? Like, proper battery maintenance and you’re good?
Zink@programming.dev 8 months ago
Is it even possible to have energy storage of any kind that is truly safe and stable? Some are better than others, of course.
SreudianFlip@sh.itjust.works 8 months ago
Giant springs are fucking scary. Energy is dangerous when you store a lot in one place.
aBundleOfFerrets@sh.itjust.works 8 months ago
Large flywheels are well known to be terrifying mechanical monsters, despite just being a spinning disc
Zink@programming.dev 8 months ago
A couple decades ago I worked at a place that did power generation turbine controls.
One thing I worked on was a redundant sync check for connecting turbines to the grid. A turbine has to be brought up to speed, about 3600rpm in the US, before being connected to the grid. The sine wave coming out of the generator needs to match the sine wave on the grid.
If they are mismatched when the huge breaker closes, it’s not a shock or fire hazard, it’s an explosion hazard.
pearable@lemmy.ml 8 months ago
Dams are scary too, I just hope people are able to decommission them slowly when the time comes. Otherwise the deluge is going to suck.
tal@lemmy.today 8 months ago
considers
Kinetic energy of a body in orbit, I suppose. Like, you want to accelerate the Moon, you get a bigger orbit. We pull energy out of it via tidal generators, and in theory, we could speed its orbit up, increase its altitude.
I mean, it could theoretically smack into something, but it’s not gonna hit the Earth very readily, and the speed of an object that isn’t in Earth orbit is probably more of a factor in a collision than the speed of something that is.
Zink@programming.dev 8 months ago
The orbital one sounds interesting. That’s a lot of energy, and it could do a lot of damage, but it seems very stable if left untouched.
My gut suspicion is that with something more safe/stable, you would also be dealing with a low quality/potency source and/or low efficiency.
laverabe@lemmy.world 8 months ago
On a small scale yeah. The sun heats rocks and they’re able to store heat for up to an hour or so. Cats can attest to that.
Same with large bodies of water; the ocean, lakes, pools, etc.
Zink@programming.dev 8 months ago
I guess in my head I was implying that it was energy humans store for other humans to use at grid scale. When I said "of any kind” I guess that’s not what I meant, lol.
So in my line of thinking, you’re right about e.g. using the sun to heat a rock. But if we use the sun to heat something for electricity generation, or we heat some medium for energy storage, I bet that will be pretty potent.
Besides, past the small scale into the smallEST scale, it’s all just energy anyway, man. 😎
catloaf@lemm.ee 8 months ago
If you poke a hole in it, is it just as exciting as lithium?
Gormadt@lemmy.blahaj.zone 8 months ago
A different kind of excitement without flames.
Sodium cells have been out of the lab for at least 8 months now.
They’re still a bit pricey but the price is quickly falling
soEZ@lemmy.world 8 months ago
These are more fun then lipos… I wounder if u pack a tesla full of these…will it manage to achive escape velocity after a crash? I mean gas cars and lithium batteries right now just tun car into lots fo smoke and flames…but these might really change how we see crashes…
dual_sport_dork@lemmy.world 8 months ago
It is if it’s a dry electrolyte cell.
UnderpantsWeevil@lemmy.world 8 months ago
Flinging a brick of sodium into my bathtub to prove you wrong.
dual_sport_dork@lemmy.world 8 months ago
Post vid, please.
roguetrick@lemmy.world 8 months ago
Doesn’t take into account the reactivity difference with the matrix either. Solid state batteries are in a vitrified matrix essentially, and glass don’t burn.