Lithium Ion is more advanced battery technology because it’s got high energy density which means it’s used in consumer electronics. Lower energy density technologies exist with better properties for storing at grid scale. They’re heavier and bigger than lithium ion batteries, but can store energy a lot longer and use much more available materials. One example is Form Energy’s Iron/Air battery, which uses rusting iron to store electricity for hundreds of hours.
Comment on US grid adds batteries at 10x the rate of natural gas in first half of 2024
skillissuer@discuss.tchncs.de 2 months agothere’s not enough lithium on this planet to store enough energy for like half of europe nevermind entire world
you know how to do this the right way? use pumped-storage hydropower. need more? build more, then dump power into heaters (or better yet heat pumps) on demand from grid since fossil fuel heating will be replaced anyway. (we’re nowhere close to this, but it can sink a lot of energy quickly while not using it at some other times)
Semi_Hemi_Demigod@lemmy.world 2 months ago
MrVilliam@lemmy.world 2 months ago
there’s not enough lithium
I am hopeful that developments in sodium ion battery tech will yield different strategies. The weight and energy densities vs cost and abundance mean that it makes more sense (at this time at least) to reserve lithium ion battery tech for more mobile use cases like handheld devices and EVs, but use sodium ion battery tech for things like grid storage or home energy management solutions. I dream of a day in the next decade or two in which virtually nobody bothers to have a generator for emergency home power and instead opts for a UPS with inverters and chargers hooked up to a home battery, allowing not only emergency power, but a “smart” system to power the home via battery during high grid demand and charge during low demand, normalizing grid supply curves and making power bills cheaper for all. The path to this starts with big scale early adopters like hotels and apartment buildings, which could easily supplement energy needs through solar panels on their large roofs at the same time.
For all the enshittification we’re seeing across most industries, I am cautiously optimistic that we might be living at the edge of an energy revolution. We may see fucking huge fundamental changes to our energy infrastructure within our lifetimes, and that’s one of the few things I’m excited about for the near future. It’s unfortunate that it’s taking a crisis to force these changes, but it would be a great pivot nonetheless.
skillissuer@discuss.tchncs.de 2 months ago
i think that in order for that to happen we have to change the way we think about energy. more of use it when it’s available, and less use it on demand
MrVilliam@lemmy.world 2 months ago
Dirty production initiates based on demand. So-called “peaker plants” start up under high demand when cost per megawatt rises. They typically start early in the day as most people wake up and cook breakfast and get ready for work and then shut down after people get home and wind down for bed. More extreme versions of this only fire up for more extreme weather events or when other plants trip offline unexpectedly. If demand is normalized, so too is production, which would phase out dirtier power production like coal and natural gas. As an operator at a combined cycle natural gas power plant, this would force me to find a new job. Which is fine by me. The system needs to be changed to be fixed, even if it causes a little pain for me.
Think of the grid as a pressurized system. To maintain consistent pressure, demand and supply need to be approximately equivalent. When use is high, the pressure drops so demand goes up to maintain that pressure, so prices per megawatt rise to incentivize power plants to step on the gas pedal to produce more. When use drops off, that production needs to reduce to prevent over pressurization of the grid. With battery storage, that pressure swing diminishes. It’s effectively a pressure regulator.
Additionally, the home power management system via UPS and inverters does exactly what you’re saying in terms of using it when it’s available. At times of high demand and high cost and low supply, your home could seamlessly switch over to your home battery supply for your energy needs to remove strain on the grid, and this would be attractive to set up through things like proposed tax credits and generally reducing your home energy bill. So at 3pm in an August heat wave, your AC could be battery powered from when you charged while you slept the night before. And you’ll recharge tonight when everybody’s AC has switched off for the most part. All this to say: you’re absolutely right and we already agree, but also we can use emerging tech and legislation to vastly expedite this badly-needed transition.
CheeseNoodle@lemmy.world 2 months ago
Sodium batteries are already being produced (only in one factory in the US and one in China so far but its a start to commercial production), there’s enough of that stuff to build batteries for the entire planet a thousand times over.
guacupado@lemmy.world 2 months ago
Didn’t realize we had sodium batteries being made in the US on a commercial scale.
cygnus@lemmy.ca 2 months ago
there’s not enough lithium on this planet to store enough energy for like half of europe nevermind entire world
This is a good use case for sodium batteries. They’re less energy-dense so not great for vehicles, but for a stationary application like this they’re perfect.
skillissuer@discuss.tchncs.de 2 months ago
yeah this is fine, but these need to run at high temperatures last time i’ve checked. that makes it a bit more complicated to use
ProdigalFrog@slrpnk.net 2 months ago
Sodiem electric batteries, like the type that CATL developed? Or do you mean hot molten salt thermal batteries? Because I think the other poster is referring to the first kind.
skillissuer@discuss.tchncs.de 2 months ago
i thought sodium batteries need low hundreds C for ceramic electrolyte to work. i stand corrected
roguetrick@lemmy.world 2 months ago
Oh there’s enough lithium. Not enough lithium production, surely, but there’s enough lithium in the ocean and in brines easily.
SeaJ@lemm.ee 2 months ago
You know what pumped storage hydro is? A battery. Unfortunately that is not an option everywhere and takes up a massive amount of space. The space portion is not a huge issue for grid energy storage for the most part but it can definitely limit where you can do it and its capacity.
As for the amount of lithium available, there is absolutely more than enough considering it is one of the most abundant materials on our planet. Not that we need to use lithium for grid energy storage. Lithium is very high density energy storage which you are correct that is not a high priority for grid energy storage.
Basically there is no one solution for grid energy storage. There are mechanical batteries, medium density chemical batteries, and even “depleted” EV batteries. We just need to apply what is right for each particular scenario.
I’m not disagreeing with you overall. But I figured more info and context is helpful.
Addv4@lemmy.world 2 months ago
There are plenty of alternatives for lithium batteries, chiefly sodium and a redox flow. Heating/cooling is good as well to store, but not every structure is energy efficient enough that it would make much sense. Good thing to work towards, but grid batteries would probably be faster and easier to implement. I have reservations towards pumped hydropower, in part due to watching how hard it is to decommission a lot of hydroelectric dams these days in US as well as the cost to create the areas to hold the water (a lot of the areas that are geographically advantageous for pumped hydropower tend to be nature reserves or national parks, soo…).
Semi_Hemi_Demigod@lemmy.world 2 months ago
Since most energy is used for heat, storing it as heat makes a lot of sense, and there are sand thermal storage systems that can scale from single household to whole neighborhoods.
Addv4@lemmy.world 2 months ago
But then you’re just having another system for storing energy, which probably isn’t very easy to implement. An easier solution if you don’t want to use grid batteries is just to improve housing insulation and schedule heating/cooling for non peak hours, so that you are just using less energy overall. The problem in my mind is that that would require a lot of renovation on older homes, which is just more expensive and slower than adding grid batteries. Don’t get me wrong, those changes should be mandated for newer housing, but expecting it to be implemented in older housing probably isn’t gonna happen.
Semi_Hemi_Demigod@lemmy.world 2 months ago
They’re already using them in Finland. And there’s a company building them for residential applications
If you take something not unlike a water heater and fill it with sand that you then heat to about 1,000 degrees farenheit. Then when you need heat you just pump some air through it and use that feed of hot air to provide heat where you need it. And unlike heat pumps, this can be added to the sort of baseboard heat you find in a lot of older homes.
And since the heaters are just simple resistive coils with 100% efficiency, it’s a simple and cheap way to store electricity that you’re going to use for heating anyway. Remember that every time you change energy from one kind to another you’re going to lose some of it in the process.
skillissuer@discuss.tchncs.de 2 months ago
i have a sneaking suspicion that if 80%+ of energy is used on heating anyway then storing that heat at point of use and topping it up when excess energy is available is the easiest, least wasteful way to go
Addv4@lemmy.world 2 months ago
Heating/cooling probably, but renovation of older structures is generally expensive and complicated, whereas grid batteries can scale until newer construction (which should be more insulated) can keep up. It’s not an either or, but more of both that will compliment each other as time progresses.
skillissuer@discuss.tchncs.de 2 months ago
redox flow doesn’t have that much better energy density. granted, it’s great for long term storage, but it’s still not there, plus it takes stupidly large amounts of vanadium to run. there’s also zinc bromide flow battery but this one deposits zinc so it’s limited on one side
thebestaquaman@lemmy.world 2 months ago
Of course, Li-ion batteries will never cover large-scale power demand. Not primarily because of lack of lithium, but because it’s a technology that scales far too poorly into the MWh/TWh scale, and has a far too short lifetime.
The battery tech we need for truly large scale storage is different from what we need for small, portable storage. Stuff like redox-flow batteries are looking promising.
There’s also hydrogen, with different storage methods being actively researched- from direct storage to using ammonia as a carrier.
The issue with using mechanical storage (like pumped hydropower) is threefold (off the top of my head):
- It has ridiculously low energy density
- Even after > 100 years of pumps and turbines, the power loss in a pump/release cycle is very high.
- It’s heavily limited by geography
I’m not saying pumped hydropower isn’t part of the solution: I believe the solution is that we need many solutions. I just think it’s important to point out that battery tech isn’t some monolithic thing, and that there are issues with pumped hydropower (and mechanical storage in general).
Fermion@feddit.nl 2 months ago
Pumped hydro is both very geologically limited and environmentally detrimental. That technology alone will not substantially reduce the need for other power storage technologies/ peaker plants.
tal@lemmy.today 2 months ago
If you are willing to live with the very considerable impact and are willing to do a costly megaproject, one possibility that I’ve raised before: it’d be possible to go implement Atlantropa, but instead of using it to generate hydroelectric power, as its creator envisioned, use it for pumped storage. The world will never need more energy storage than that could provide.
en.wikipedia.org/wiki/Atlantropa
There are two very considerable issues there:
First, dropping the Mediterranean Sea by 200 meters is going to have a very large impact on the coasts of Africa and Europe.
Second, if it’s permitted to build structures in this new area – as was originally intended – then a rupture of the dams would produce cataclysmic flooding; we would essentially have recreated the Zanclean flood. Russia just blew up a hydroelectric dam in Ukraine that caused a mess and water to drop upstream by 2 meters. If such a dam were to be attacked in a war like that, it would be horrendous. We’d be talking about a water depth difference a hundred times that and a far larger area.
Fermion@feddit.nl 2 months ago
There is also the issue that if building nuclear plants takes too long and is too expensive to be the solution, then such a project would also be too late to matter. Also transmission losses likely mean this is a solution for much less of the world population than you think. If we had a truly global lossless grid, then we would need much less energy storage to begin with.
Impracticalities aside, absurd geoengineering what-ifs are entertaining. Thanks for sharing.
skillissuer@discuss.tchncs.de 2 months ago
at least it works at scale relevant to grids. there are other interesting devices that store high grade heat in things like molten silicon or sand, then convert it to electric energy again, but it’s rather at prototype scale now i think. power to hydrogen is fine if it’s replacing hydrogen from natural gas, but it’s wack for storage of energy