Comment on 1.1 History

<- View Parent
crapwittyname@lemm.ee ⁨1⁩ ⁨year⁩ ago

Well that’s lovely, thank you 😊 So Newton’s law of universal gravitation is: F= G×M×m/r^2 which is simple enough to be able to say it in a sentence: "the force of gravity F on two masses M and m is proportional to their masses and square of the distance between them, r " so the heavier and closer planets/suns/black holes are, the greater the gravitationnel pull.
Coulomb’s law is: F= k×Q×q/r^2 which is pretty much exactly the same as you have probably noticed: "the force of electrical attraction F on two charged particles Q and q is proportional to their charges and the square of the distance between them, r "
So the exact same rule applies to planets and atoms. Their behaviour can be explained in the same way. It’s called an “inverse square law”, it’s got a name because they happen everywhere. And it’s just, like… Why? Why does the universe work that way? You’re not really encouraged to ask that sort of question as a science student, because it “goes nowhere” and doesn’t lead to actionable results. But I give it quite spooky. There are loads of weird results like that in science and maths (see quantum theory for abundant examples!) but it’s unusual to be able to sit and think about it. There is, in the car of the inverse square law, a pretty elegant mathematical explanation for why they’re so common, but it doesn’t quite scratch the itch for me, it just raises more questions

source
Sort:hotnewtop