We do, depending on how you count it.
There’s two major widths in a processor. The data register width and the address bus width, but even that is not the whole story. If you go back to a processor like the 68000, the classic 16-bit processor, it has:
- 32-bit data registers
- 16- bit ALU
- 16-bit data bus
- 32-bit address registers
- 24-bit address bus
If you look at a Zen 4 core it has:
- 64-bit data registers
- 512-bit AVX data registers
- 6 x 64-bit integer ALUs
- 4 x 256-bit AVX ALUs
- 2 x 128-bit data bus to DDR5 (dual edge 64-bit)
- ~40-bits of addressable physical RAM
So, what do you want to call this processor?
64-bit (integer width), 128-bit (physical data bus width), 256-bit (widest ALU) or 512-bit (widest register width)?
LeFantome@programming.dev 6 months ago
I would say that you make a decent argument that the ALU has the strongest claim to the “bitness” of a CPU. In that way, we are already beyond 64 bit.
For me though, what really defines a CPU is the software that runs natively. The Zen4 runs software written for the AMD64 family of processors. That is, it runs 64 bit software. This software will not run on the “32 bit” x86 processors that came before it ( like the K5, K6, and original Athlon ). If AMD released the AMD128 instruction set, it would not run on the Zen4 even though it may technically be enough hardware to do so.
The Motorola 68000 only had a 16 but ALU but was able to run the same 32 bit software that ran in later Motorola processors that were truly 32 bit. Software written for the 68000 was essentially still native on processors sold as late as 2014 ( 35 years after the 68000 was released ). This was not some kid of compatibility mode, these processors were still using the same 32 bit ISA.
The Linux kernel that runs on the Zen4 will also run on 64 bit machines made 20 years ago as they also support the amd64 / x86-64 ISA.
Where the article is correct is that there does not seem to be much push to move on from 64 bit software. The Zen4 supports instructions to perform higher-bit operations but they are optional. Most applications do not use them, including the operating system. For the most part, the Zen4 runs the same software as the Opteron ( released in 2003 ). The same pre-compiled Linux distro will run on both.