This is dumb. Literally nothing has changed. Anyone who knows anything about LLM’s knows that they’ve struggled with math more than almost every other discipline. It sounds counter intuitive for a computer to be shit at math, but this is because LLM’s “intelligence” is through mimicry. They do not calculate math like a calculator. They calculate all responses based on a probability distribution constructed from billions of human text inputs. E.g. When input equal “YHXURUAG”, the most probable response based on MY SPECIFIC INPUT DATASET OF X BILLION WORDS is “GOPALEFDT”. They are as smart, and as fallible, as wikipedia + reddit + twitter, etc, etc. They are as fallible as their constructing dataset.
“Prompt engineering” is about understanding an LLM’s strengths and weaknesses, and learning how to work with them to build out a context and efficiently achieve an end result, whatever that desired result may be. It’s not dead, and it’s not going anywhere as long as LLM’s exist.
chetradley@lemmy.world 8 months ago
I really wish all of these companies racing to replace their existing software features and employees with LLMs understood this. So many applications are dependent on a response being 100% accurate for a very specific request as opposed to being 80% accurate for a wide variety of requests. “Based on training data, here’s what a response to your input might look like” is pretty good for conversational language and image generation, but it sucks for anything requiring computation or expertise. Worst of all, it’s so confidently wrong about things I might as well be back on Reddit.
abhibeckert@lemmy.world 8 months ago
They totally understand it. And OpenAI has solved it. For example while researching The Ultimate Answer to Life the Universe and Everything, I asked it to calculate 6 by 9 in base 13 and got the correct answer - 42. ChatGPT didn’t use the LLM to calculate that, it used the LLM to write and execute the following python script: