Fair enough. That definitely is true for a car. I would wonder whether the power/surface area/weight/energy consumption all scale linearly or if a vehicle like a semi with more surface area could take advantage of increased number solar panels, or would the amount of work needed to move the larger truck scale equally to the power gained?
Thank you for your proving reasoning for your opinions and sources. You’re groovy. Don’t feel like you have to again for this random thought of mine unless it’s enjoyable for you as part of our conversation.
Grimy@lemmy.world 1 year ago
If it takes 14 days to charge the battery, you just need to use it less then a 14th of its range per day and this all becomes very feasible, no? First link on google tells me high efficiency EVs output 6.4km per kwh. That’s 30 km a day at 80kwh, nothing to scoff at in my opinion, although its probably less.
I also think it could become popular to lengthen the in between charging times with higher capacity batteries.
frezik@midwest.social 1 year ago
Then factor in the extra cost of the panels and connecting hardware. The ones mentioned in OP are supposed to be dirt cheap, but they’re also half as efficient. The tradeoff cancels out the benefit.
Also, this won’t help highway driving much. EVs have already solved city driving just fine. 100mi range will do, even without good charging stations outside your home (with caveats for apartment dwellers). Highway range is where we need improvement, but you can’t ask people to just drive for 1/14th of the day there.