Ragebait?
I’m in robotics and find plenty of use for ML methods. Think of image classifiers, how do you want to approach that without oversimplified problem settings?
Or even in control or coordination problems, which can sometimes become NP-hard. Even though not optimal, ML methods are quite solid in learning patterns of highly dimensional NP hard problem settings, often outperforming hand-crafted conventional suboptimal solvers in computation effort vs solution quality analysis, especially outperforming (asymptotically) optimal solvers time-wise, even though not with optimal solutions (but “good enough” nevertheless). (Ok to be fair suboptimal solvers do that as well, but since ML methods can outperform these, I see it as an attractive middle-ground.)
wetbeardhairs@lemmy.dbzer0.com 7 hours ago
Machine learning based pattern matching is indeed very useful and profitable when applied correctly. Identify (with confidence levels) features in data that would otherwise take an extremely well trained person. And even then it’s just for the cursory search that takes the longest before presenting the highest confidence candidate results to a person for evaluation.
And what we call “AI” right now is just a much much more user friendly version of pattern matching - the primary feature of LLMs is that they natively interact with plain language prompts.