The LLM would make queries to the rigid, non-hallucinating accounting system.
ERP systems already do that, just not using AI.
For usage like that you’d wire an LLM into a tool use workflow with whatever accounting software you have. The LLM would make queries to the rigid, non-hallucinating accounting system.
I still don’t think it would be anywhere close to a good idea because you’d need a lot of safeguards and also fuck your accounting and you’ll have some unpleasant meetings with the local equivalent of the IRS.
The LLM would make queries to the rigid, non-hallucinating accounting system.
ERP systems already do that, just not using AI.
But ERP is not a cool buzzword, hence it can fuck off we’re in 2025
pinball_wizard@lemmy.zip 5 days ago
And then sometimes adds a halucination before returning an answer - particularly when it encournters anything it wasn’t trained on, like important moments when business leaders should be taking a closer look.
There’s not enough popcorn in the world for the shitshow that is coming.
vivendi@programming.dev 5 days ago
You’re misunderstanding tool use, the LLM only queries something to be done then the actual system returns the result. You can also summarize the result or something but hallucinations in that workload are remarkably low (however without tuning they can drop important information from the response)
The place where it can hallucinate is generating steps for your natural language query, or the entry stage. That’s why you need to safeguard like your ass depends on it. (Which it does, if your boss is stupid enough)
pinball_wizard@lemmy.zip 4 days ago
I’m quite aware that it’s less likely to yessir technically hallucinate in these cases.
But that doesn’t address the core issue that the query was written by the LLM, without expert oversight, which still leads to situations that are effectively halucinations.
Technically, it is returning a “correct” direct answer to a question that no rational actor would ever have asked.
The meaningless, correct-looking and wrong result for the end user is still just going to be called a halucination, by common folks.
For common usage, it’s important not to promise end users that these scenarios are free of halucination.
You and I understand that technically, they’re not getting back a halucination, just an answer to a bad question.
But for the end user to understand how to use the tool safely, they still need to know that a meaningless correct looking and wrong answer is still possible (and today, still also likely).