lte678
@lte678@feddit.de
- Comment on By 2035, falling satellites will kill or injure someone every two years, says FAA - Gizchina 1 year ago:
Who wouldn’t? They are doing some of the most advanced rocket science on the planet. Of course, trusting corporations statements and research is an entire topic of it’s own. Taking Elon Musk seriously on the other hand…
- Comment on ULTRARAM may be a silly name but it's the holy grail for memory tech and means your PC could hibernate for over 1,000 years 1 year ago:
It should be fine for normal use cases when used with error correcting codes without any active scrubbing.
According error rates for ECC RAM (which should be at least by an order of magnitude comparable) of 1 bit error per gigabyte of RAM per 1.8 hours^1^, we would assume ~5000 errors in a year. The average likelyhood of hitting an already affected byte is approx. (5000/2)/1e9=2e-6. So that probability * 5000 errors is about a 1.2 percent chance that two errors occur in one byte after a year. It grows exponentially once you start going a past a year. But in total, I would say that standard error correcting codes should be sufficient to catch all errors, even if in hibernation for a whole year.
- Comment on ULTRARAM may be a silly name but it's the holy grail for memory tech and means your PC could hibernate for over 1,000 years 1 year ago:
TMR (so the tripilicate method) wouldn’t be super suitable for this kind of application since it is a bit overkill in terms of redundancy. Just from an information theory perspective, you should only have enough parity suitable for the amount of corruption you are expecting (in this case, not a lot, maybe a handful of bits after a year or two). TMR is optimal for when you are expecting the whole result to be wrong or right, not just corrupted. ECC and periodic scrubbing should be suitable for this. That is what is done by space-grade processors and RAM.
- Comment on ULTRARAM may be a silly name but it's the holy grail for memory tech and means your PC could hibernate for over 1,000 years 1 year ago:
The gold around satellites are actually very thin layers of mylar, aluminum foil and kapton (a type of golden, transparent plastic) which are used to keep heat inside the satellite inside, and heat outside, outside (See Multi-Layer Insulation). Radiation shielding usually comes from the aluminum structural elements of the spacecraft, or is close to the electronics so you do not waste too much mass on shielding material. Basically, shielding efficacy is most determined by its thickness, so it quickly becomes quite heavy.