There are plenty of plans. They’re just wholly inadequate.
Looking at my state. Coal is long gone. We plan offshore wind farms …. That keep getting blocked. We plan to buy huge amounts of long distance hydro … but transmission lines are blocked by intervening states. The ideas are there, the plans are there, but follow through is not. Clearing the obstacles is not
jubilationtcornpone@sh.itjust.works 5 months ago
Power utilities frequently complain about declining base load generation capacity. On this particular issue, they are actually correct. You have to have a consistent level of base load generation capacity that is capable of scaling to meet peak demand. Wind and solar power are great but are not available on demand.
So, you can either store excess power generated by renewable sources or generate with non-renewable sources. Utility scale storage just isn’t there at this point. Many of the coal plants that have been retired over the past two decades have been replaced by natural gas plants, which isn’t really an improvement.
One thing that probably exacerbates this problem is the fact that much of the power generated in the US has historically been fairly localized. Meaning, it’s generated pretty close to where it’s consumed. Moving away from a “local” generation model is not as easy as it sounds and makes utilities nervous, for legitimate reasons.
What we need in the interim is more small scale nuclear development. It’s far from a perfect solution but it’s way better than what we currently have.
cloud_herder@lemmy.world 5 months ago
Yep! Base load generation is the amount of energy that is constantly required and it has to be consistent. Any city or area will always use a certain minimum amount of energy, at every hour of the day. There is never a minute that demand dips below and this is called the base load. Intermittent renewables without storage can’t cover it, yet.
The other problem is economics. Hydro, geothermal, natural gas, nuclear, and coal can be operated to generate consistent reliable amounts of energy to cover it but at different costs. Removing hydro and geothermal as not all regions can leverage it - leaves, generally, coal, nat gas, and nuclear. Coal has been generally actively phased out over the last decade (in the US at least, I’m sure elsewhere), leaving natural gas and nuclear as options.
Nuclear with a substantially lower, if not negligible, carbon footprint outside of construction has so much red tape and lack of expertise and economies of scale that each plant and part ends up being close to bespoke with high costs and long construction times. Something like eight years and multiple billions of dollars.
Natural gas plants can be brought online in something like 1.5 to 2 years for substantially lower costs due to mass production, broader expertise, and less regulation.
What this leads to is a price per kW for being something like $.80+ for nuclear and like ~$.20 for natural gas over the lifetime of the plant.
These are all figures I loosely recall and haven’t confirmed or updated in my mind in a few years so I’m sure I’m off but the differences are roughly the same.
Small Modular Reactors (SMRs) are looking to innovate to solve this economic problem with nuclear by providing mass production capabilities of nuclear power but we aren’t there yet.
So, for now, economically, natural gas is often chosen over nuclear just as coal was before it. Hopefully that changes in the future sooner rather than later.