computer scientists, neurologists, and philosophers can’t answer that either, or else we’d already have the algorithms we’d need to build human equivalent A.I.
I think your mixing up sentience / consciousness with intelligence. What is consciousness doesn’t have a good answer right now and like you said philosophers, computer scientists and neurologist can’t come to a clear answer but most think llms aren’t conscious.
Intelligence on the other hand does have more concrete definitions that at least computer scientists use that usually revolve around the ability to solve diverse problems and answer questions outside of the entities original training set / database. Yes doing an SAT test with the answer key isn’t intelligent because that’s in your “database” and is just a matter of copying over the answers. LLMs don’t do this though, it doesn’t do a lookup of past SAT questions it’s seen and answer it, it uses some process of “reasoning” to do it. If you gave an LLM an SAT question that was not in it’s original training set it would probably still answer it correctly.
That isn’t to say that LLMs are the be all and end all of intelligence, there are different types of intelligence corresponding to the set of problems that intelligence is solving. A plant identification A.I. is intelligent for being able to identify various plants in different scenarios but it completely lacks any emotional, conversational intelligence, etc. The same can be said of a botanist who also may be able to identify plants but may lack some artistic intelligence to depict them. Intelligence comes in many forms.
Different tests can measure different forms of intelligence. The SAT measures a couple like reasoning, rhetoric, scientific etc. The turing test measures conversational intelligence , and the article you showed doesn’t seem to show a quote from him saying that it doesn’t measure intelligence, but turing would probably agree it doesn’t measure some sort of general intelligence, just one facet.
nevemsenki@lemmy.world 1 year ago
The “reasoning” in LLM is literally statistical probability of which word would follow which word. It has no real concept of what it talks about beyond the pre-built relationship matrices between words and language rules. That’s why LLMs confidently hallucinate obvious bullshit time to time - to them there’s no meaning to either truthful or absolute bonkers text, it’s just words that should probably follow each other.
Not_mikey@lemmy.world 1 year ago
All inference is just statistical probability. Every answer you give outside of your direct experience is just you infering what might be the answer. Even things we hold as verifiable truth that we haven’t experienced is just a guess that the person who told it to us isn’t lying or has some sort of proof to there statement.
Take some piece of knowledge like “Biden won the 2020 election” me and you would probably agree this is the truth, but we can’t possibly “know” it’s the truth or connect it to some verifiable experience, we never counted every ballot or were at every polling station. We “know” it’s the truth because more people, and more respectable people, told us it was and our brain makes a statistical guess that their answer is right based on their weight. Just like an LLM other people will hallucinate or bullshit and come on the other side of that guess and assert the opposite and even make up stuff to go along with that story.
This in essence is what reasoning is, you weigh the possibilities of either side being correct, and pick the one that has more weight. That’s why science, an epistemological application of reason, is so heavily reliant on statistics…