One of the things our sensory system and brain do is limit our input. The road to agi might involve giving it everything and finding the optimum set of filters, not selecting input and training up from that.
You’d need the baseline set of systems (“baby agi”) and then turn it loose with goal seeking.
Sekoia@lemmy.blahaj.zone 11 months ago
Neural networks are named like that because they’re based on a model of neurons from the 50s, which was then adapted further to work better with computers (so it doesn’t resemble the model much anymore anyway). A more accurate term is Multi-Layer Perceptron.
We now know this model is… effectively completely wrong.
Additionally, the main part (or glue, really) of LLMs is not even an MLP, but a “self-attention” layer. You can’t say LLMs work like a brain, because they don’t. The rest is debatable but it’s important to remember that there are billions of dollars of value in selling the dream of conscious AI.
0ops@lemm.ee 11 months ago
I’m with you that LLM’s don’t work like the human brain. They were built for a very specific task. But that’s a model architecture problem (and being gimped by having only two dimension of awareness, arguably two if you count “self attention” another limiting factor in it’s depth of understanding, see my post history if you want). I wouldn’t bet against us making it to agi however we define it through incremental improvements over the next decade or two.