They appear to be attempting to give it a distinct name here.
Rather than scattering when they come into contact with phonons, excitons in Re6Se8Cl2 actually bind with phonons to create new quasiparticles called acoustic exciton-polarons. Although polarons are found in many materials, those in Re6Se8Cl2 have a special property: they are capable of ballistic, or scatter-free, flow. This ballistic behavior could mean faster and more efficient devices one day.
lmaydev@lemmy.world 1 year ago
link.springer.com/chapter/…/978-1-4899-0996-1_3
TWeaK@lemm.ee 1 year ago
Yes but they’re talking about acoustic exciton polarons. Which I’m not sure makes great sense, it’s kind of stretching the terminology a little excessively, although maybe it only sounds that way because it’s new. The acoustic part is from the phonon, which is what makes it a polaron, and it is an exciton polaron because it’s an electron-hole pair rather than just an electron. But it also implies the prior existence of an “optical exciton polaron”, a term which hasn’t yet been coined. However, they’re the one discovering the new quasi-particle, so they get to name it. In any case, searching for “acoustic exciton polarons” brings up many articles about this specific paper and little else.