There are theoretical limits to the speed of computation. One limit is the minimum amount of energy it takes to flip a bit. For 256-bit encryption, you have to start saying things like “assume we can convert 100% of the energy from a supernova into a theoretically perfect computer with perfect efficiency”. This is a round about way of saying “impossible”.
We’ve been hammering AES and RSA for decades now, and we haven’t been able to get significantly better than brute force against either one. Quantum computers will break RSA, but worst case scenario for AES is that we double the key length and we’re good again.
FooBarrington@lemmy.world 1 year ago
I have no idea why you think there isn’t. Maybe you’re going off a strange definition of “unbreakable”. When it’s used in cryptography, it means “unbreakable in reasonable time limits” (e.g. millions of years).
The thing about good encryption is that it’s not just hard to break, it’s mathematically too hard to break even if your available computing power keeps rising exponentially. Unless there is a mistake in the algorithm, it is for all intents and purposes, unbreakable.