Potential energy (in joules) is mass (in g) times height (in meters) times 9.8 m/s^2 .
So in order to store the 30 kWh per day that the typical American house uses, you’d need to convert the 30 kWh into 108,000,000 joules, and divide by 9.8, to determine how you’d want to store that energy. You’d need the height times mass to be about 11 million. So do you take a 1500 kg weight (about the weight of a Toyota Camry) and raise it about 7.3 meters (about 2 stories in a typical residential home)?
And if that’s only one day’s worth of energy, how would you store a month’s worth? Or the 3800kwh (13.68 x 10^9 joules) discussed in the article?
At that point, we’re talking about raising 10 Camrys 93 meters into the air, just for one household. Without accounting for the lost energy and inefficiencies in the charging/discharging cycle.
Chemical energy is way easier to store.
lurker2718@lemmings.world 1 day ago
There seems to be an error in your calculation: Up to the 11 000 000 kgm required it is correct. However the Toyota Camry with 7.3 m provides only 11 000 kgm. So you miss a factor of 1000. You would need 1000 cars lifted the height of your home. For just one day (or a few days in more efficient home)
exasperation@lemmy.dbzer0.com 22 hours ago
You’re absolutely right.
I don’t know why I thought to use grams instead of kilograms. I knew kg was the base unit for these conversions but just slipped for some reason.