Comment on Apple just proved AI "reasoning" models like Claude, DeepSeek-R1, and o3-mini don't actually reason at all.

<- View Parent
auraithx@lemmy.dbzer0.com ⁨2⁩ ⁨days⁩ ago

You’re absolutely right that inference in an LLM is a fixed, deterministic function after training, and that the input space is finite due to the discrete token vocabulary and finite context length. So yes, in theory, you could precompute every possible input-output mapping and store them in a giant table. That much is mathematically valid. But where your argument breaks down is in claiming that this makes an LLM equivalent to a conventional Markov chain in function or behavior.

A Markov chain is not simply defined as “a function from finite context to next-token distribution.” It is defined by a specific type of process where the next state depends on the current state via fixed transition probabilities between discrete states. The model operates over symbolic states with no internal computation. LLMs, even during inference, compute outputs via multi-layered continuous transformations, with attention mixing, learned positional embeddings, and non-linear activations. These mechanisms mean that while the function is fixed, its structure does not resemble a state machine—it resembles a hierarchical pattern recognizer and function approximator.

Your claim is essentially that “any deterministic function over a finite input space is equivalent to a table.” This is true in a computational sense but misleading in a representational and behavioral sense. If I gave you a function that maps 4096-bit inputs to 50257-dimensional probability vectors and said, “This is equivalent to a transition table,” you could technically agree, but the structure and generative capacity of that function is not Markovian. That function may simulate reasoning, abstraction, and composition. A Markov chain never does.

You are collapsing implementation equivalence (yes, the function could be stored in a table) with model equivalence (no, it does not behave like a Markov chain). The fact that you could freeze the output behavior into a lookup structure doesn’t change that the lookup structure is derived from a fundamentally different class of computation.

The training process doesn’t “build a Markov chain.” It builds a function that estimates conditional token probabilities via optimization over a non-Markov architecture. The inference process then applies that function. That makes it a stateless function, yes—but not a Markov chain. Determinism plus finiteness does not imply Markovian behavior.

source
Sort:hotnewtop