Comment on Are LLMs capable of writing *good* code?
metiulekm@sh.itjust.works 2 months agoHasn’t Google already made advances through its Alpha Geometry AI?? Admittedly, that’s a geometry setting which may be easier to code than other parts of Math and there isn’t yet a clear indication AI will ever be able to reach a certain level of creativity that the human mind has, but at the same time it might get there by sheer volume of attempts.
Wanted to focus a bit on this. The thing with AlphaGeometry and AlphaProof is that they really treat doing math as a game, not unlike chess. For example, AlphaGeometry has a basic set of rules, it can apply them and it knows when it is done. And when it is done, you can be 100% sure that the solution is correct, because the rules of the game are known; the 28/42 score reported in the article is really four perfect scores and three zeros. Those systems do use LLMs, but they really are only there to suggest to the system what to try doing next. There is a very enlightening picture in the AlphaGeometry paper here: www.nature.com/articles/s41586-023-06747-5#Fig1
You can automatically verify correctness of code the same way. For example Lean, the language AlphaProof uses internally, can be used for general programming. In general, we call similar programming techniques formal methods. But most people don’t do this, since this is more time-consuming than normal programming, and in many cases we don’t even know how to define the goal of our code (how to define correct rendering in a game?). So this is only really done when the correctness of the program is critical, like famously they verified the code of the automatic metro in Paris this way. And so most people don’t try to make programming AI work this way.