We’ve got some really good theories, though. Neurons make new connections and prune them over time. We know about two types of ion channels within the synapse - AMPA and NMDA. AMPA channels open within the post-synapse neuron when glutamate is released by the pre-synapse neuron. And the AMPA receptor allows sodium ions into the dell, causing it to activate.
If the post-synapse cell fires for a long enough time, i.e. recieves strong enough input from another cells/enough AMPA receptors open, the NMDA receptor opens and calcium enters the cell. Typically an ion of magnesium keeps it closed. Once opened, it triggers a series of cellular mechanisms that cause the connection between the neurons to get stronger.
Neuromancer49@midwest.social 6 months ago
We’ve got some really good theories, though. Neurons make new connections and prune them over time. We know about two types of ion channels within the synapse - AMPA and NMDA. AMPA channels open within the post-synapse neuron when glutamate is released by the pre-synapse neuron. And the AMPA receptor allows sodium ions into the dell, causing it to activate.
If the post-synapse cell fires for a long enough time, i.e. recieves strong enough input from another cells/enough AMPA receptors open, the NMDA receptor opens and calcium enters the cell. Typically an ion of magnesium keeps it closed. Once opened, it triggers a series of cellular mechanisms that cause the connection between the neurons to get stronger.
This is how Donald Hebb’s theory of learning works. en.wikipedia.org/wiki/Hebbian_theory?wprov=sfla1
Cells that fire together, wire together.
onion@feddit.de 6 months ago
Name checks out