What?
At best you’re arguing that because it’s not conscious it’s not useful, which… No.
My car isn’t conscious and it’s perfectly useful.
A system that can analyze patterns and either identify instances of the pattern or extrapolate on the pattern is extremely useful. It’s the “hard but boring” part of a lot of human endeavors.
We’re gonna see it wane as a key marketing point at some point, but it’s been in use for years and it’s gonna keep being in use for a while.
aesthelete@lemmy.world 1 year ago
I agree with most of what you’re saying here, but just wanted to add that another really hard part of a lot of human endeavors is actual prediction, which none of these things (despite their names) actually do.
These technologies are fine for figuring out that you often by avocados when you buy tortillas, but they were utter shit at predicting anything about, for instance, pandemic supply chains…and I think that’s at least partially because they expect (given the input data and the techniques that drive them) the future to be very similar to the past. Which holds ok, until it very much doesn’t anymore.
jasondj@ttrpg.network 1 year ago
I’m sorry, they aren’t good at predicting?
My man, do you have any idea how modern meteorology works?
ricecake@sh.itjust.works 1 year ago
Well, I would disagree that they don’t predict things. That’s entirely what LLMs and such are.
Making predictions about global supply chains isn’t the “hard but boring” type of problem I was talking about.
Circling a defect, putting log messages under the right label, or things like that is what it’s suited for.
Nothing is good at predicting global supply chain issues. It’s unreasonable to expect AI to be good at it when I is also shit at it.
aesthelete@lemmy.world 1 year ago
They make probabilistic predictions. Which are ok if you’re doing simple forecasting or bucketing based upon historical data, and correlates and all of that.
What they are crappier about is things that are somewhat intuitively obvious but can’t be forecasted on the basis of historical trends. So, like new and emerging trends or things like panic buying behavior making it so the whole world is somehow out of TP for a time.
I’d argue that relying solely on “predictive analytics” and just in time supply chains aggravated a lot of issues during the big COVID crunches, and also makes your supply chain more brittle in general.
ricecake@sh.itjust.works 1 year ago
All predictions are probabilistic.
AI indeed isn’t great at modeling complex or difficult to quantify phenomenon, but neither are people.
Our recent logistical issues are much more based on the frailty of just in time supplying than the methods we use to gauge demand. Most of those methods aren’t what would typically be called AI, since the system isn’t learning so much as it’s drawing a line on a graph.
We didn’t actually run out of toilet paper, people just thought we did and so would buy all of it if they saw it in the shelves. It’s a relatively local good, so it didn’t usually get caught up in the issues with shipping getting bogged down, it’s just that people chose to override the model that said that stores should buy five trucks full of TP because it would fill their warehouse and they were worried they’d be stuck with the backlog.