Comment on Determining the reason no one replied to your Lemmy post.

<- View Parent
TropicalDingdong@lemmy.world ⁨5⁩ ⁨days⁩ ago

So lets just cover a few things…

Hypothesis testing:

The phrase “if your post got less than 4 comments, that was statistically significant” can be misleading if we don’t clearly define what is being tested. When you perform a hypothesis test, you need to start by stating:

Null hypothesis (H₀): For example, “the average number of comments per post is λ = 8.2.”

Alternative hypothesis (H₁): For example, “the average number of comments per post is different from 8.2” (or you could have a directional alternative if you have prior reasoning).

Without a clearly defined H₀ and H₁, the statement about significance becomes ambiguous. The p-value (or “significance” level) tells you how unusual an observation is under the assumption that the null hypothesis is true. It doesn’t automatically imply that an external factor caused that observation. Plugging in numbers doesn’t supplant the interpretability issue.

“Statistical significance”

The interpretation that “there is a 95% probability that something else caused it not to get more comments” is a common misinterpretation of statistical significance. What the 5% significance level really means is that, under the null hypothesis, there is only a 5% chance of observing an outcome as extreme as (or more extreme than) the one you obtained. It is not a direct statement about the probability of an alternative cause. Saying “something else caused” can be confusing. It’s better to say, “if the observed comment count falls in the critical region, the observation would be very unlikely under the null hypothesis.”

Critical regions

Using critical regions based on the Poisson distribution can be useful to flag unusual observations. However, you need to be careful that the interpretation of those regions aligns with the hypothesis test framework. For instance, simply saying that fewer than 4 comments falls in the “critical region” implies that you reject the null when observing such counts, but it doesn’t explain what alternative hypothesis you’re leaning toward—high engagement versus low engagement isn’t inherently “good” or “bad” without further context. There are many, many reasons why a post might end up with a low count. Use the script I sent you previously and look at what happens after 5PM on a Friday in this place. A magnificent post at a wrong time versus a well timed adequate post? What is engagement actually telling us?

Model Parameters and Hypothesis Testing

It appears that you may have been focusing more on calculating the Poisson probabilities (i.e., the parameters of the Poisson distribution) rather than setting up and executing a complete hypothesis test. While the calculations help you understand the distribution, hypothesis testing requires you to formally test whether the data observed is consistent with the null hypothesis. Calculating “less than 4 comments” as a cutoff is a good start, but you might add a step that actually calculates the p-value for an observed comment count. This would give you a clearer measure of how “unusual” your observation is under your model.

source
Sort:hotnewtop