Comment on Paralyzed Man Unable to Walk After Maker of His Powered Exoskeleton Tells Him It's Now Obsolete
BearOfaTime@lemm.ee 2 months agoIt’s a frigging battery.
Surely we can get a group of battery techs and mechanical engineers together to come up with a solution.
Hell, I’ve been bastardizing the “wrong” batteries into devices since the mid-70’s, while today I’m usually replacing crappy built-in batteries with 18650’s. And I’m no EE, just have a little skill and vision.
Surely the battery spec on this is pretty clear, and it’s an off-the-shelf tech (not some odd chemistry devised by the company). Not that it really matters - a replacement merely needs to fit in the space, and match voltage and current requirements.
mkwt@lemmy.world 2 months ago
Here’s my guess. I don’t know anything about this particular device, but I have worked with medical devices.
A powered exo-skeleton sounds like it might be a class II medical device. Being a medical device, the OEM was required to produce a safety risk analysis per ISO 14971 in the EU and 21 CFR 820 in the US. I don’t know what all was listed, but probably one of the safety risks was thermal runaway from the (assumed) lithium ion batteries.
Lithium ion battery packs have a well known problem with occasionally overheating and catching fire. This famously delayed the launch of the 787 Dreamliner. This is also why you can’t put your phone or laptop battery into your checked luggage.
In the original risk analysis, there will be a number of mitigation steps identified for each hazard. For the lithium thermal runway, these probably include a mix of temperature monitoring, overheat shutdown, and passive design features in the battery pack itself to try to keep the impacts of over temperature and fire away from the patient.
So how does the price get to 100k? It could be some kind of unique design features that are now out of production and the original tooling is not available. The 100k cost is probably something like to redesign the production tooling, particularly if you have to remake injection molds.
You can’t just use any off the shelf battery pack, because that would invalidate the risk analysis. You’d need to redo the risk analysis, repeat at least some amount of validation testing, and possibly resubmit an application to the FDA.
TLDR: you can get some MEs and EEs together to solve this problem, but once they’re on the case, you can blow through 100k real fast.
kaboom36@ani.social 2 months ago
Rebuilding the original pack with new cells is common practice, no need for new tooling
kaboom36@ani.social 2 months ago
Oh
Yeah, that’s something any jackass with a soldering iron could fix in about 10 seconds